The Bayesian Decision Tree Technique with a Sweeping Strategy

نویسندگان

  • Vitaly Schetinin
  • Jonathan E. Fieldsend
  • Derek Partridge
  • Wojtek J. Krzanowski
  • Richard M. Everson
  • Trevor C. Bailey
  • Adolfo Hernandez
چکیده

The uncertainty of classification outcomes is of crucial importance for many safety critical applications including, for example, medical diagnostics. In such applications the uncertainty of classification can be reliably estimated within a Bayesian model averaging technique that allows the use of prior information. Decision Tree (DT) classification models used within such a technique gives experts additional information by making this classification scheme observable. The use of the Markov Chain Monte Carlo (MCMC) methodology of stochastic sampling makes the Bayesian DT technique feasible to perform. However, in practice, the MCMC technique may become stuck in a particular DT which is far away from a region with a maximal posterior. Sampling such DTs causes bias in the posterior estimates, and as a result the evaluation of classification uncertainty may be incorrect. In a particular case, the negative effect of such sampling may be reduced by giving additional prior information on the shape of DTs. In this paper we describe a new approach based on sweeping the DTs without additional priors on the favorite shape of DTs. The performances of Bayesian DT techniques with the standard and sweeping strategies are compared on a synthetic data as well as on real datasets. Quantitatively evaluating the uncertainty in terms of entropy of class posterior probabilities, we found that the sweeping strategy is superior to the standard strategy. I. INTRODUCTION he uncertainty of classification outcomes is of crucial importance for many safety critical applications such as medical diagnostics and prediction of survival of patient after injuries. In such applications Bayesian model averaging provide reliable estimates of the classification uncertainty. The use of Decision Tree (DT) classification models within a Bayesian averaging framework gives experts additional information by making the classification scheme observable [1, 2]. The main idea of using DT classification models is to recursively partition data points in an axis-parallel manner. Such models provide natural feature selection and uncover the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Decision Tree Averaging for the Probabilistic Interpretation of Solar Flare Occurrences

Bayesian averaging over Decision Trees (DTs) allows the class posterior probabilities to be estimated, while the DT models are understandable for domain experts. The use of Markov Chain Monte Carlo (MCMC) technique of stochastic approximation makes the Bayesian DT averaging feasible. In this paper we describe a new Bayesian MCMC technique exploiting a sweeping strategy allowing the posterior di...

متن کامل

Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree

Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...

متن کامل

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

Predicting Twist Condition by Bayesian Classification and Decision Tree Techniques

Railway infrastructures are among the most important national assets of countries. Most of the annual budget of infrastructure managers are spent on repairing, improving and maintaining railways. The best repair method should consider all economic and technical aspects of the problem. In recent years, data analysis of maintenance records has contributed significantly for minimizing the costs. B...

متن کامل

Experimental Comparison of Classification Uncertainty for Randomised and Bayesian Decision Tree Ensembles

In this paper we experimentally compare the classification uncertainty of the randomised Decision Tree (DT) ensemble technique and the Bayesian DT technique with a restarting strategy on a synthetic dataset as well as on some datasets commonly used in the machine learning community. For quantitative evaluation of classification uncertainty, we use an Uncertainty Envelope dealing with the class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0504042  شماره 

صفحات  -

تاریخ انتشار 2004